Metabolic Labeling of Caenorhabditis elegans Primary Embryonic Cells with Azido-Sugars as a Tool for Glycoprotein Discovery
نویسندگان
چکیده
Glycobiology research with Caenorhabditis elegans (C. elegans) has benefitted from the numerous genetic and cell biology tools available in this system. However, the lack of a cell line and the relative inaccessibility of C. elegans somatic cells in vivo have limited the biochemical approaches available in this model. Here we report that C. elegans primary embryonic cells in culture incorporate azido-sugar analogs of N-acetylgalactosamine (GalNAc) and N-acetylglucosamine (GlcNAc), and that the labeled glycoproteins can be analyzed by mass spectrometry. By using this metabolic labeling approach, we have identified a set of novel C. elegans glycoprotein candidates, which include several mitochondrially-annotated proteins. This observation was unexpected given that mitochondrial glycoproteins have only rarely been reported, and it suggests that glycosylation of mitochondrially-annotated proteins might occur more frequently than previously thought. Using independent experimental strategies, we validated a subset of our glycoprotein candidates. These include a mitochondrial, atypical glycoprotein (ATP synthase α-subunit), a predicted glycoprotein (aspartyl protease, ASP-4), and a protein family with established glycosylation in other species (actin). Additionally, we observed a glycosylated isoform of ATP synthase α-subunit in bovine heart tissue and a primate cell line (COS-7). Overall, our finding that C. elegans primary embryonic cells are amenable to metabolic labeling demonstrates that biochemical studies in C. elegans are feasible, which opens the door to labeling C. elegans cells with other radioactive or azido-substrates and should enable the identification of additional post-translationally modified targets and analysis of the genes required for their modification using C. elegans mutant libraries.
منابع مشابه
Photoaffinity labeling of avermectin binding sites from Caenorhabditis elegans and Drosophila melanogaster.
An azido-avermectin analog [4'' alpha-(4-azidosalicylamido-epsilon-caproylamido-beta-alan ylamido)-4''-deoxyavermectin B1a; azido-AVM] was synthesized and used to photoaffinity label avermectin binding sites present in the membranes of Caenorhabditis elegans and Drosophila melanogaster. Azido-AVM was biologically active and behaved like a competitive inhibitor of [3H]ivermectin binding to C. el...
متن کاملCell-specific proteomic analysis in Caenorhabditis elegans.
Proteomic analysis of rare cells in heterogeneous environments presents difficult challenges. Systematic methods are needed to enrich, identify, and quantify proteins expressed in specific cells in complex biological systems including multicellular plants and animals. Here, we have engineered a Caenorhabditis elegans phenylalanyl-tRNA synthetase capable of tagging proteins with the reactive non...
متن کاملIn Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates
Unnatural sugar-mediated metabolic labeling of cancer cells, coupled with efficient Click chemistry, has shown great potential for in vivo imaging and cancer targeting. Thus far, chemical labeling of cancer cells has been limited to the small-sized azido groups, with the large-sized and highly hydrophobic dibenzocyclooctyne (DBCO) being correspondingly used as the targeting ligand. However, sur...
متن کاملBehavioral and Metabolic Effects of the Atypical Antipsychotic Ziprasidone on the Nematode Caenorhabditis elegans
Atypical antipsychotics are associated with metabolic syndrome, primarily associated with weight gain. The effects of Ziprasidone, an atypical antipsychotic, on metabolic syndrome has yet to be evaluated. Here in, we evaluated lipid accumulation and behavioral changes in a new experimental model, the nematode Caenorhabditis elegans (C. elegans). Behavioral parameters in the worms were evaluated...
متن کاملQuantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans
Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology to quantitatively examine metabolic and signaling pathways in yeast, fruit flies, plants, cell cultures and mice. However, only metabolic labeling using (15)N has been applied to examine such events in the nematode Caenorhabditis elegans. We have recently shown that C. elegans can be completely l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012